Identification of gully debris flow deposits in Protonilus Mensae, Mars: Characterization of a water-bearing, energetic gully-forming process
نویسنده
چکیده
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t a r t i c l e i n f o Keywords: Mars gully pasted-on terrain permafrost debris flow climate Gullies are a class of geologically recent landform on Mars that show evidence of downslope transport of sedimentary material from recessed alcoves, through incised channels, to distributary fans or aprons. The mechanisms invoked to account for the formation of gullies on Mars range from completely dry, granular flows or landslides, to debris flows that incorporate some component of liquid water, to fluvial erosion and alluvial-fan-like deposition. Each of these processes requires different amounts of liquid water, and produces different characteristic morphologies. We report on the identification of unusual lobate structures present in proximity to gullies in Protonilus Mensae. The lobes are up to ~ 3 m thick and terminate in rounded snouts. These lobate structures are present mostly downslope of gullies, and can be traced upslope through channels, to gully fan termini, and in places, onto gully fan surfaces. Crater dating indicates that the deposits formed recently—potentially within the past ~ 500 ka. We use HRSC digital elevation models to constrain mechanical properties of the lobate deposits, and to compare their formation environment to that of typical martian gullies. The Protonilus Mensae lobate deposits are interpreted to indicate local dominance of wet debris flows in the formation of the observed gullies and lobes. These observations are consistent with 1) top-down melting of the ice component of the latitude-dependent mantle terrain in which the gullies form and 2) initiation of debris flows by mobilization of the dusty lithic component of the mantle. The suite of morphological observations diagnostic of wet debris flow processes suggests the identification of an unusual environment in which the wet debris-flow formational end-member is locally the dominant gully forming process; elsewhere on Mars gully morphology may be more consistent with a range of other water-related sediment transport mechanisms including fluvial erosion, hyperconcentrated flow, and low-strength mudflows (that deposit as fans rather than lobes). These results suggest that 1) gully-forming processes involve liquid water, 2) that the water source is associated with the martian latitude-dependent mantle, and 3) that a …
منابع مشابه
Recent Gully Activity on Mars: Clues from Late-stage Water Flow in Gully Systems and Channels in the Antarctic Dry Valleys
Introduction: One of the major surprises of the Mars Global Surveyor mission was the discovery of gullies, a class of unusually young features consisting of an alcove, a channel and a fan [1-2]. These features were interpreted to have originated through the flow of liquid water originating from groundwater discharge [1,2], although alternate interpretations have been presented [see 3]. Uncertai...
متن کاملPreservation of Late Amazonian Mars ice and water-related deposits in a unique crater environment in Noachis Terra: Age relationships between lobate debris tongues and gullies
The Amazonian period of Mars has been described as static, cold, and dry. Recent analysis of high-resolution imagery of equatorial and mid-latitude regions has revealed an array of young landforms produced in association with ice and liquid water; because near-surface ice in these regions is currently unstable, these ice-and-water-related landforms suggest one or more episodes of martian climat...
متن کاملMeasuring Slopes of Gully Fan Apices Using Digital Elevation Models
Introduction: Martian gullies are defined by [1] to be slope features comprised of an upslope alcove, a midslope channel, and a downslope depositional fan. Due to their relative youth and similarities to waterrelated features on Earth, the Martian gullies have attracted much attention since their discovery by the Mars Orbiter Camera [1]. Many erosional agents for the gullies have been proposed ...
متن کاملSmall-scale morphologic properties of martian gullies: insights from analysis of HiRISE images
Introduction: The discovery of abundant, geologically recent gullies on Mars in Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images [1] has led to numerous studies examining potential mechanisms for recent fluid or fluid-rich surface processes [e.g., 1-2]. The process or processes involved in Martian gully formation provide important insights into Martian geologic and volatile history. ...
متن کاملGully Formation on Mars and Earth: the Transition from Glacial Activity to Gully Depositional Phases
Introduction: The discovery of gullies on Mars [1,2] resulted in a wide variety of proposed candidate mechanisms for formation but ensuing analyses have shown very strong latitude and orientation dependencies on their distributions [3-6]. These constraints have been interpreted to require: 1) a volatile on or near the surface as a source of liquid water, and 2) insolation and slope orientation ...
متن کامل